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ordinate axis and the helix angle @, is shown in fractions of a2, ie. §=Zg/n.

The problem can also be solved using the elastic-plastic deformation equations of Sect.2Z.
The only difference is that the deformation parameters (3.2) must be substituted into (1.12)
instead of (2.9). The solution of the respective problem for an ideal elastic-plasticmaterial
and the deformation theory of plasticity when ¢, = n/2, R/la =10"* and 1,/E = 7.2-40° are
shown in Fig.2 by the solid lines. They are in good agreement with the results of the theory
of limit equilibrium, beginning from the helix angles ¢ <C0.8%/2. The disagreement observed
at @< 0.8%/2 is explained by the fact that in the region of the # =0 plane the approx-
imating sphere lies inside the surface (2.9). The results are virtually indistinguishable
when the accurate relations are used.
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AN APPROXIMATE METHOD OF OPTIMIZING THE SHAPE OF REINFORCEMENT RODS
IN NON-UNIFORMLY AGING MATERIALS*

A.D. DROZDOV and V.B. KOLMANOVSKII

The problem of optimizing the shape of a rod made of a non-uniformly aging
viscoelastic material and reinforced by an elastic material is considered.
Geometrical and integral constraints are imposed on the area of cross-section
of the rod. The optimum shape is selected to minimize the maximum deflection
of the rod in a fixed time interval. An approximate method of optimizing

the shape is proposed and justified in the case of slight creep of the material.
Results of numerical calculations are presented.

1. Statement of the problem of rod shape optimization. Consider the bending
of a rod of length L made from non—-uniformly aging viscoelastic material and reinforced by
an elastic material. The (f axis is directed along the axis of the rod in the undeformed
state. We will denote by I, (), I,, I (}) the moments of inertia of the cross-sections of the
basic mdterial, the reinforcing material, and the whole rod, respectively, and by S (&) the
rod cross-section at the point E. The arrangement of the reinforcement is specified, and
is independent of the coordinate §.  The rod moment of inertia I (§) and the area of cross-
section § (§) are connected by the relation

I3 =asS"(%) (1.1)
where n, a, are given positive constants. The cross-sectional area of the rod is bounded
0< S CSE S < (1.2

and the reinforcing material is completely covered by the viscoelastic material. The latter
assumption is satisfied for example, when the reinforcement is in the region corresponding
to the minimum possible area of cross-section that represents either a rectangle of constant
thickness and varying width, or a rectangle of constant width and varying thickness, or a

*pPrikl.Matem.Mekhan.,48,1,58-67,1984
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circle. The moduli E, of instantaneous elastic deformation of the basic material and E, of
the reinforcing material are constant, and the measure of creep of the viscoelastic material
is defined /1/ by the formula C;(¢,1)= ¢ (1) [1 ——exp(——y(t——r , where ¢ is a twice continu-

[}

usly differentiable, monotonically decreasi

0 are constant coefficients.
An external load is applied to the rod at the instant of time ¢ =0 that acts during

ol
he time interval [0, TI. We denote by Y (t, ) the rod deflection at the point E at the in-

stant t, by M (t, §) the bending moment M (t, &) = M, (¢, £, Y (t, &), and by p; (§) the age of the
basic material at the instant the external load is applied. The function P; is piecewise~
L..Luuuua d.HU UUUH‘JEU-
When the stress state is uniaxial, the strains ¢, ¢, and stresses o, 0, of the basic

and reinforcing materials are connected by the relations /2/

P

s

[9]

eot ) =288 — (ool Crlt + pr B T4 pr (B s 0 (= 2

a

It follows from the hypothesis of plane cross-sections and the conditions of continuity
that the rod deflection satisfies the equation

—?-“a“;(t'i)_ebSmK(t‘f"pl(g)i"*P1(§»d1—-—- (1.3)

0

My —e\MEHEE+0:® 7+ @) a7)

where
Kt 1) = 30 (. Var., O {t. 1) = C. (+. DO (1.4)
K@ t)=9C{, Yoy, C(t,v)=C; {70,
b= (g) I@ [ EJ oIo (E) T3, Gy = limrax Py (%)
@ (1) = @ (VW Cy, EoCy

The function b defines the degree of reinforcement of the basic material by the elastic

- o vy +3i+ 0 Aafi o o~ - 3 an im { =, . o
one, the gquantity {, defines the creep of the aged material, and the dimensicnless parameter

¢ 1is the ratio between the elasticity and creep of the basic material. The numerical value
of & does not exceed unity for materials with strong creep properties- {(e.g., concrete), and
is substantially less than unity for materials with low creep, Henceforth we will assume &
to be a small parameter.

The problem of optimizing the shape of a rod with a fixed volume V° consists of deter-
mining the function §, that satisfies (1.2) and minimizes the value of the rod maximum
deflection L
J=supe|Y BB {So®)dE=V" (1.5)

&

tel0, 7, t=10, L]

The function b aatisfies the equaticn

A AN pr 2" LIF __FE.
s/ = Par Pm T dkglg (Gl U \a bl

—
[

;L 1.6}
(1.6}

N

I3
P1

We take the function b as the new controlling function, since it is connected with § by

IE)

the unique relation (1.1}, {1.4).

2. Expansion of the solution of the optimization problem in series in
powers of a small parameter-. The control 5° that satisfies (1.6) will be called the &-
optimal solution of the problem of optimizing the shape of a rod for a fixed volume, if a
constant ¢>0 independent of & exists such that J (") <<J, + ce, where J, is the minimum
value of the function (1.5) and the equation

L
1 E_— E; qt/n e By \i/n
§["‘T:;——"'E"] d§={ E". \ Vo=Vl (2.1

is satisfied.
Generally the precedure for determining the optimimum shape of the rod using the small
parameter is as follows. We expand the function ¥ in a series in powers of & Y (t,E) = Y, +
e¥,+ ...+ ¢&Y;+ .... , substitute this expansion into (1.3), and equate the coefficients
of like powers of €. We obtain
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#Y b . Y, _ b [ IMEEY) p @
D= MY, G = [T

] m
Y, 1 M. t E,, ¥,
"agzj' "“—’"""Ebg {:Z -_-’;!—-.....___—_._._‘a;m ? Yi... Y, —
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it toom .
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LAy,

K@+ p @y t+mE)dn j>2

T+m@)dt] +5§

¢

We denote by Y (4, £, 8), Y; (4, B, b) the solutions of (1.3) and (2.2) that correspond to
control b, and by b, b° the controls that minimize the functionals J (B) =sup 1Y (¢, E B} |

Ji(b) =sups,e | Yo {t, & B) + ...+ &/Y; (t, &, b) lunder conditions (1.6), (2.1). Let us assume that
at fixed j >0 a constant ¢ >0 exists such that for any t0,T), t 0,1, e (0,1) that
satisfy (1.6), (2.1) the inequality
j
1Y@ ub— 2 Yt bb)<oen 2.3

k=0

is satisfied. Then the following estimates hold:
[T o® —T5 b0 | <™, 1T (b)) — T (00 | <ee™ (2.4)
| T (o) = J (6 | < 268™

Relation (2.4) means that the function b, is the ¢ _optimal control in the problem
of the rod shape optimization.

Remark. Let the external load and rod support conditions be independent of time. The

functions VY, Y, have the form. :
Yotto B=2,(8, i, B=0—"5({®

where 2, 2; satisfies the oridnary differential equations

87, &
*&E}mm-ﬁx(ﬁ,zo) (2.5)

3 b My (8,
e ey s RNV AR

If inequality (2.3) is satisfied, the problem of determining the optimal control of the
integrodifferential equation (1.3) to within quantities of the order of & reduces to the
problem of constructing the optimal control of ordinary differential equations (2.5).

We will further assume that the rod is subjected to a distributed transverse load of
intensity ¢ > 0 and compressive force P. If the function ¢, is specified, the problem of
shape optimization will be called the problem with full information. If, however, the function

¢ is -+ a priori wunknown, and only its equivalent force

L
0=Sa®a
o

is known, and the quantity suPrge!Y (4 )] is to be minimized, the problem of rod shape
optimization will be called the problem with insufficient information. To justify the estimate
{2.4) it is then necessary to specify that the constant ¢ should be independent of ¢ The
problem when there is no compressible force P was considered in /3/.

3. Optimization of the shape of a cantilever rod with incomplete informa-
tion regarding the external load. Let one end of the rod be rigidly fixed and the
other be free. The rod deflection is measured from the free end. Let us assume that the
following inequality is satisfied:

PL? [0, B8 + (Ey — Eo) I,1™ < 0,250 (3.1

that ensures the stability of the respective elastic rod of any admissible form. Introducing
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the dimensionless variables
z=EL, q@ =g {LQ, p@ =p () (3.2
B (@) =b(8), y( 2 =PY (t EV(QL)

we write the equation for the deflection in the form

6‘ya(:z- D) L aPy(t z)=— aﬁm{i +ey(1 —PB)e(p(a)) x

(oxp|—v(t+8{ 0@+ p(edt)]dar} —

0 0
t

eavB(1—B) {y(x 2) o (v + p (@) — 5 (0 (r + P (@)X

]
<

exp [v(v+ B { o &+ p@)d8)]) x

0

§ oxp|—v(E+¢b § o(n+p@)dn)| d§) dv. a= PLY(E.L)

y (b 1) =0y (6 00z =0, m(z)={q®E—2)dt

where a is a dimensionless parameter.

For any admissible functions § the rod deflection reaches its maximum value at ¢ =T,
z =0, g(z) =8(z), where 8§ is the delta function, i.e. when the transverse load represent the
concentrated load Q applied to the free end of the rod.

We denote by B the set of functions P measurable on the segment [0, 1] satisfying (1.6),
and by B, the set of functions §,< B, that satisfy (2.1).

The problem of optimizing the shape of the rod consists of determining the functions
fo &= B, that minimize the functional J(B) =y (T, 0), where the function y.satisfies (3.3)
when m (@) = my(z) =1 — z. We set 2, () =y (0, 2), z, (¢ z) = "9y (¢, z)/3z. The functions z,, z,
satisfy the equations
-+ aPzg = — aPm (z) (3.4)

dz?

t
ZaleD) | aBa (t )= — asyB (1 — ﬁ)[gzl(-t. 2) 9(1 + p(2) X

o

" oxp(evh | 0G+ (N &) a7 + (20 @) + m @) 0 (0 (2D ]
i

exp(—ev { o(v + p(2) )

[}
wt)=229 o, ¢ =208 _,

Using the method of Lagrange multipliers we form the expression
S - q E,—E 1y
— Lo n
IO B)=20(0) + { 21 (8. 0)oxp (— ye) e + 2 (S [W ——“E,——] dz — vo)
o 0

Let us consider the problem of determining the optimal control P¢* & B that minimizes
the functional J® on the set B. The optimal control in the initial problem has the form

Bo = Bo™), where XAy is found from the candition

1
1 E —E, 1/n
—_— e dz=V
§ [ ﬂ.(,h) €3] £, ] °

We denote by VY the solution of the conjugate equation
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ﬁ%%f)‘+“§¢<"”~’)=—mﬁ(i-ﬁ)¢<z+p(x» X

T
Vo ajexp[— v {4+ eBo@+p@NdE] du vt )=0, vt O)por=—1

] t

and by F, G the functions of the form
1

F(t, 2, By=12,(t: 2) + ey (1 — 2B) ’ng, (% 2y e +pla) x
9

exp (evP S 9 (& + p(2)) dE) dr + (20(2) + m(2) @ (0 (2)) X
exp(-—- evﬁicp(g—i—p(z)) dg)] — e293B (1 — B) X {shhm)wh +p(z))§¢(§+9(x))d§ X
oxp (— evp S 9 + o (2)) dE ) dv + (20(2) + m (@) X
tp(p(x))gq)(g + p(z))diexp(—-avﬁscp@-!—p(z))dﬁ)]

T
62 B)=a[¥ (0 2) (20 @) + m(2) +{ 0 (0 2) F ¢, B oxp (— v1) ]
[

Let B, (M 2) be the solution of the algebraic equation

— Ey )l-lln

G (z, ) proin (£ — S p) 7 =

According to the necessary optimality condition /4/, the function §,® is defined by

the formula
B Bo (A 2) < Ba

(0 =1 Bur Bo (As ) > By
Bo(hz) Bi<<Po(hz) <

In the case of full information about the external load the above formulas remain valid,
if by m (x) we mean the dimensionless bending moment of the external load.

To investigate the effect of the basic material age on the optimum shape of the rod, a
numerical solution was obtained for the problem of optimizing a rod of rectangular cross-
section of thickness h and constant width d when there is no reinforcing material. The selected

.35

0.30

Fig.l Fig.2

parameters of the problem were: L=4m, d=03 m, h=01m, h=03m %@ =4 +4/f 4,=
0.238 .40-¢ MIa-!, 4= 1.85-10~ MIla=l. day, E,= 2,0-10¢ MIla, 7= 0.04 day~l T = 50 day, V=024 m>. The
rod is subjected to a uniformly distributed transverse load and compressive force P = 2.5.106 N.
As the test functions p, we used the following:

24 iz m
1) py (E) =2 day: 2) p: (€)= 15 day: 8) Px(E)={ 156:;’:25224 o
1bday,0<E<2 m

4 P‘(F')“{ 2days2<E<4m

The optimal thickness distribution of the rod is shown in Fig.l, where curves l1-4{ cor-
respond to the above test functions. The calculations show that the aging of the whole rod
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material virtually does not affect the optimal thickness distribution, while a change in the
age of one the parts of the rod results in a redistribution of the material and an increase in
the younger part of the rod at the expense of the older part.

The solution of the equations that determine the optimum shape of the cantilever rod is
a fairly complicated problem, particularly when a reinforcing material is present. It is
more convenient to use the method of Sect.2 of expanding the solution of the optimization
problem in series in powers of the small parameter, and determining the é&’-optimal shape of
the rod. When condition (3.1) is satisfied for any function B & B, formula (2.3) holds for
constant ¢; independent of ¢,t,x. Hence the €®—optimal control in the problem of optimizing
the shape of the cantilever rod provides the minimum of the functional

Ji () =y, (0) + e [1 —exp (—vD) y, (0)

where y,, ¥ is the solution of the set of equations

Lo | afyo=—apm(z) yo(1)= 2L =0 (3.5)

dz?
B L oy =—aB(L —~ B9 (@) v+ m @] 1 () =L —0

To solve the problem of the optimal control of the set of equations (3.5) we can use the
Pontriagin maximum principle /5/.

Above we succeeded in obtaining, in explicit form, the solution of the problem of optimiz-
ing the rod shape; hence it is possible to show beforehand that for chosen conditions of fix-
ing the ends, at what point the rod deflection reaches its maximum value. For other cases of
end support it is difficult to show in advance the point of maximum deflection, and the
optimization problem is more complicated. It is then more convenient to solve not the initial
problem but the converse problem of optimizing the rod shape for a given maximum value of the
deflection Y°. It consists in determining the function S, that satisfies (1.2) and minimizes
the rod volume with the condition

sup,: | Y (5, B < Y7 (3.6)

The solutions of the original and converse optimization problems are identical in the
following sense. Let V° be the minimum rod volume for which the functional (1.5) does not
exceed Y°. Then V° is the minimum value of the quality functional in the converse problem,
and the optimal shapes of the rod in the original and converse problems are identical. Con-
versely, letY® be the minimum value of the right-hand side of (3.6) for which the minimum
value of the rod volume in the converse prcoblem is V°. Then, Y° is the minimum quality
functional in the original problem, and the optimal rod shapes in the original and the converse
problems are identical.

The control f°&= B that satisfies (3.6) will be called the & -optimum solution of the
reciprocal problem, if a constant ¢ >0 exists independent of & such that the maximum deflec-
tion that correspond to this control does not exceed Y° 4+ ¢e and the rod volume does not ex-
ceed WV(Y®) +ce, where V (¥Y°) is the minimum volume in the converse problem.

4. Optimization of the shape of a hinged rod with full information about
the external load. Let both ends of the rod be hinged and let the rod be subjected to a
distributed load of intensity ¢ > 0 and a compressive force P. The converse problem of rod
shape optimization consists in determining the function o= B that minimizes the functional

fr o1 E,—Ey qun
V(ﬂ)=g[w—~f—f‘z——] dzx (4.1}
with the condition ’
sup |y (4 2) | <y = PYTI(QL) (4.2)

When inequality (3.1) is satisfied for any (<10, 7], z< 10,1], = B , the rod deflec-
tion is non-negative and reaches its maximum value at ¢ = T. Hence, it is possible to sub-
stitute for (4.2) the expression

T

Supx [Zo @) + § 21(6 2)exp (— 1) dt] <y° (4.3)
o

We will solve the optimal control problem (3.4), (4.1), and (4.3) using the penalty method

/6/. We fix the sequence of positive numbers {km} liMpsew Pm = 20, and consider the sequence

of minimization problems on the set B of functionals
1 T

V)=V )+ | | max (20 () + § 21t D) evtdt —y°,0) " da (4.9
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We denote by B,° the optimal control in problem (3.4}, (4.4), and by ¥ the solution of
the conjugate eguation

T
SECD - app (b 2)=—earB(1 — B o (¢t -+ p(2)) | ¥(x. 2) x

H
T

exp[— v { (1 + ePo @+ p (@) 8] dr — 2up max [ 20 (2) +

2 (t z) exp (— yt) dt — 37, 0] , PH0)=0, $({&1)=0

So3ny

Using the necessary condition of optimality /4/, we obtain that for any m the function
fm° is determined by the formula

B Bo (1, 2) <P
By = 1{ P2 Bo(Lrz) > B
Be(fr2)y BBt 2) <Be

It can be shown that for any m the control B,* is the p,"-optimum control in the
problem of optimizing the rod shape.

To investigate the effect of basic material age and the magnitude of the maximum admis-
sible deflection on the optimum shape of the rod the problem of shape optimation was solved
numerically for a rod of rectangular cross-section of constant width and varying thickness
without reinforcing material. The following parameters of the problem were selected: L= i0m,
d=05m, h=03nm, hy = 0.5m, T =25 days. The rod is subjected to a uniformly distributed
transverse load of intensity g¢; = 10* N and a force P = 25-106) N, We chose the following as
test functions ¢, :
7day,0<Ei<Sm |
3day,5<E<i0m’
20day 0<E<Sm
3day S<EI0m

1) pu (8) = 3day; 2) ma)={

CPNCH

The optimal distribution of the rod thickness for ¥'= 47.10"%m is represented in Fig.2,
where curves l—3 correspond to the above test functions. Curves 4 and 5 correspond to
Y9> 12.3-10~*m, and Y°=8.7-10"*m, when the age of the basic material is defined by test func-
tion 2). The numerical analysis shows that as the age of one of the parts of the rodmaterial
increases its volume decreases, and a partial redistribution of material from the region of
older to that of younger material occurs. When the maximum admissible deflection Y' is reduced,
the rod volume increases, and the rod seems to swell, retaining its general shape.

5. Approximate solution of the problem of rod shape optimization with
complete information about the external load. The algorithm for solving the converse
problem of rod shape optimization proposed in Sect.4 involves solving a system of non-linear
integro-differential equations, and depends on the choice of the sequence of penalty coefficients

{Bm}- In the case of a small parameter the algorithm can be improved by coordinating the
choice of the penalty coefficients and the value of the small parameter. The initial problem
then reduces to the problem of the optimal control of a system of the form (2.2) without con-
straints on the phase coordinates. The latter problem is substantially simpler than the
input one, and the fixed parameter can be determined using well~known numerical methods.

To give a specific example, we will apply the proposed algorithm to a hinged rod.

We will represent the magnitude of the deflection in the form of a series in powers of

¥y o) =y +ep +...+8 Fees (5.1
Substituting expansion (1.5) into Eq.(3.3) and equating the coefficients of like powers
of the small parameter, we obtain a set of equations similar to (2.2). We introduce the fol-

lowing notation: .
W (@) =yo (Ts 2} + ey (Tr2) + .- . + ey (T, 7)

Besides the integral parameter j we introduce the parameter [}, 0 <<I<Cj, and consider the

problem of minimizing on the set B the functionals
1

V() =V @)+ max[y (T, 2) — 4" 0] dz (5.2)

Vit @)=V @) + ¢ {max[n;(@) —y% 0] da
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We denote by B,° B;,,° the controls which minimize the functionals (5.2), by TNy (%)
the value of the function M; (*) that corresponds to the control B;,°, and by ;" the
maximum value of the function Mjit on the segment {0,1). 1t can be shown that a constant

3 >0 exists independent of e such that the inequalities

V(B5.)) <V (Bo) + cagiHt (5.3)
MY+ cedts, supe (T 2, B5,0) T y° + coe?'/? (5.4)

are satisfied.

We will select the parameter ! from the condition that the degree of error with respect
to functional (5.3) and with respect to the maximum value of the deflection (5.4) are equal.
Then when 1 =10,6 (G + 1) , the optimal control of the set of equations (2.2) that minimizes
the quality criterion Vj;,;(P) determines the e’#G+l-optimal control in the converse problem
of rod shape optimization.

In particular, when j= 2, the optimal control of the system of ordinary differential
equations

LL | oo = — o ()

d
T By = — aB (1= B) 9 (0 (2) (v + m ().
T

D oy =— a8 — ) {1 — B0 0 @) o+ m (=) x § (¢ 40 (=N [oxp (= v — exp (— 7)) a}
0

is the zero boundary condition that minimizes the functional
1
V) + e (max[n: (2) — v, 0)az
0
Mg (2) = yo () + € (1 — exp (—¥7)) 4, (z) + ey, ()

The proposed algorithm of optimal shape determination can be applied to rods with other
forms of support. It is then only necessary to investigate the supplementary conditions that
guarantee that inequality (2.3) is satisfied.
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RATIONAL SCHEMES FOR REINFORCING LAMINAR PLATES FROM COMPOSITE MATERIALS™

V.M. KARTVELISHVILI and V.V, KOBELEV

New problems for optimizing the internal structure of plates from a laminar
composite for a number of local and integral functionals are considered.

A model of a laminar-fibrous composite plate is described. Prior to
optimization, the plate is a packet of monolayers homogeneous over the
thickness. The monolayers are formed by periodic unidirectional stacking
of reinforcing fibres in an elastic matrix. To determine the effective
elastic properties of the monolayers, a homogenized model of the composite
material is used. The concentration of reinforcing fibres or the angles
of orientation of the axes of material anisotropy in a given number of
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